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We study the spectral properties of the Floquet operator for the periodically 
kicked Hamiltonian H(t) = H o + ;t o ) (~o 52 +5 6(t - nT), H o being self-adjoint 
and pure point. We show that the Floquet operator is pure point for almost 
every ;t, if ~0 is cyclic for H o and has absolutely convergent expansion in the 
basis of eigenstates of H0. When this last condition is not satisfied, the Floquet 
operator can have a continuous spectrum, as we show by an example. 
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1. I N T R O D U C T I O N  

There is a growing interest in the study of quantum systems with time- 
dependent Hamiltonians. An important motivation in this area is a better 
understanding of the quantum dynamics of simple systems whose classical 
counterpart exhibits chaotic behavior. Among these simple systems are the 
time-periodic ones, like the "kicked rotator, ''(4) the hydrogen atom in elec- 
tromagnetic fields,(1) and the trapping of charged particles in quadrupolar 
radiofrequency traps. (7) It is known that all these systems undergo, classi- 
cally, a transition from regular to chaotic motion as the strength of the 
time-periodic perturbation exceeds some critical value. On the other hand, 
one often encounters time-periodic (or quasiperiodic) systems that are 
purely quantum systems, like, say, two-state systems in quantum optics; 
their long-time behavior has recently been the subject of an intense 
investigation. (3'5'8'1~ All these approaches have in common the 
following set of questions: 
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1. Are there two qualitatively different dynamical quantum behaviors 
under these time-dependent perturbations? 

2. Is it possible to characterize quantitatively these dynamical 
behaviors as "regular" or "irregular"? 

3. Is there, as in classically chaotic systems, a "loss of memory" of the 
initial state under the evolution? 

4. Which parameters of the system govern a possible change in the 
dynamics (from a "regular" to an "irregular" one)? 

5. Are there "resonance phenomena" for suitable time frequencies? 

6. What happens when the strength of the time-dependent perturba- 
tion increases? 

For the hydrogen atoms as well as the "kicked rotator," question 1 has 
been approached through numerical experiments, allowing a detailed com- 
parison between the classical and quantum dynamics. Roughly speaking, 
these systems exhibit a quantum suppression of the classical diffusive 
behavior associated with the classically chaotic regime. ~3-5) On the con- 
trary, a similar treatment of quasiperiodically driven quantum systems 
exhibits a more "irregular" dynamical behavior when the two driving 
frequencies are incommensurate. (16'17~ However, in both cases the system 
seems dynamically stable in the sense that it suitably "keeps the memory" 
of the initial state in practical computations (this means that the 
infinitesimal errors inherent to numerical computations do not add up in 
the irregular regime to destroy irreversibility). (5) Although the "large times" 
at which the numerical experiments have been performed might not be 
large enough to show a possibly later loss of memory of the initial state, 
these results seem to be a strong indication that the answer to question 3 
is "no" in these cases. 

In the time-periodic case as well as in the quasiperiodic case with com- 
mensurate frequencies, the Floquet analysis provides one with a convenient 
self-adjoint operator called the "quasi-energy operator"; it can be viewed as 
a photon-matter Hamiltonian with a photon-matter coupling originating 
from the time-dependent term. (21) The spectral properties of this quasi- 
energy operator appear to be a suitable tool for studying the long-time 
behavior of such systems, allowing one to give to question 2 a precise 
answer: eigenstates of the quasi-energy operator correspond to a regular 
long-time behavior which is recurrent, whereas states of the continuous 
spectral subspace exhibit some kind of diffusive behavior in phase space 
(which is close in spirit to the well-known RAGE theorem). (21'9) 

With this characterization in mind, several authors have investigated 
a possible transition in the nature of the quasi-energy spectrum of the 
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kicked-rotator model when suitable parameters of the system are varied: 
going to dimensionless variables, the two relevant parameters in the quan- 
tum problem appear to be 

:~ = hT/47r (Tis the time period) 

and 

2 = k T  (k is the coupling constant) 

The resonant case c ~ Q  yields an absolutely continuous spectrum (no 
matter how large the dimensionless coupling 2 is),  (I4) and the quasi-energy 
spectrum still is continuous when ~ is close enough to rationals (Liouville 
number). (6) This answers question 5 for this problem. In the remaining 
(generic) case, no rigorous answer has been given. However, Bellissard (2) 
has proven for a smoothed version of the kicked rotator that the quasi- 
energy spectrum is pure point for small enough coupling 2 and for 
nonresonant values of ~. Similarly, for time-periodic perturbations of the 
harmonic oscillator (a question inherited from the stability problem in 
quadrupolar radiofrequency traps), I have proven that the quasi-energy 
spectrum is pure point provided the dimensionless coupling is small 
enough and the dimensionless frequency suitably nonresonant. (7/ This 
strongly suggests that c~ and 2 are two parameters that govern a possible 
change in the dynamics (question 4). However, for these simple time- 
periodic systems, we have not been able to go beyond the small coupling 
regime, which leaves question 6 open in these cases. 

Nevertheless, there are recent results by Howland (1~ TM that shed a 
new light on the quantum stability problem under time-periodic perturba- 
tions. Howland presents a large class of time-periodic perturbations V(t) 
such that, if H is any discrete, positive Hamiltonian for which the gap 
between two consecutive eigenvalues 2~ and 2k_ 1 increases like k ~ (c~ > 0), 
then the quasi-energy spectrum for H +  2V(t) is pure point for almost all 
values of the coupling 2 (no matter how large!). In this result, only the 
parameter 2 is relevant for question 4, but the result is nonperturbative 
(question 6), and there is no resonance phenomenon (question 5), in contrast 
to the previous cases. Not surprisingly, the kicked rotator (too singular in 
t!) and the harmonic oscillator (c~ = 0) are not covered by this approach! 

In this paper, we concentrate on the quantum dynamics of the 
following periodically kicked Hamiltonian: 

+ o o  

H(t)=Ho+2~o> <~p ~ 6 ( t - n T )  
n =  - - o o  

Ho is an arbitrary self-adjoint operator in a Hilbert space ~ ,  with pure 
point spectrum, 2 is a real coupling, and ~o is a state in J4 ~. We prove the 
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following result [let V~ be the Floquet operator for H(t), i.e., V;, = U(T,  0), 
U(t, s)  being the unitary evolution operator generated by H(t)].  

T h e o r e m .  Let H0 be pure point with eigenstates ((Pn)n~ and let 

cp = ~ an(Pn la~12= 1 
- - o o  

(i) Assume q) is cyclic for Ho, and 

O~3 

Then V~ has pure-point spectrum for almost every 2. 

(ii) Let H 0 be the Hamiltonian of the harmonic oscillator with 
frequency 09, and assume an = 2zn 7 with 1/2 <7 < 1. Then if ogT/2z is 
diophantine, ~0 belongs to the continuous spectral subspace of V z (any 2). 

We want to add some comments before giving the proof of this simple 
result in the following section. 

R e m a r k  a. Even very simple rank-one perturbations can produce a 
continuous quasi-energy spectrum. 

R e m a r k  b. Result (i) is a nonperturbative quantum stability result 
which holds whether the time frequency is resonant or not. On the 
contrary, the instability result of (ii) (again nonperturbative) is a true 
nonresonant  phenomenon, because it holds when o9T/2~ is irrational (in the 
resonant case e)T/2~ ~ Q, the Floquet operator has pure-point spectrum, in 
contrast to the usual "kicked rotator"; this follows from the invariance of 
the essential spectrum in this case). 

R e m a r k  c. We conjecture that (ii) can be generalized to unperturbed 
Hamiltonians Ho with eigenvalues 2n of the form 

P 

2n = h ~ ~jn j 
0 

provided c~j T / 2 z  is diophantine for some j :  1 ~< j ~< p. 

2. PROOF OF THE T H E O R E M  

The unitary operator that connects the state "just before the nth kick" 
to the state "just before the ( n -  1)th kick" is (14) 

e + i TH~ + i;t T~ > < ~o/h ( 1 ) 
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It is independent of n, and, in order to avoid questions of definiteness with 
the "6 functions," we take (1) as a definition of the Floquet operator V;. 
We denote 

U = e +iTHo/h (2) 

# = e +i~r/h _ 1 (3) 

and an elementary computation yields 

V;.= U(1 + #~o)(~p) (4) 

Therefore we are in a situation very similar to that considered in ref. 20, 
with unitary instead of self-adjoint operators. The spectral theorem for 
unitary operators yields (22) 

2r~ 
V;= I e '~ (5) 

Jo 

so that, denoting 

d#;~(O) = ( q), dFx(O) (p ) 

we have, for any z such that [z[ ~ 1, 

f ~  d#~.(O) F;- -  ((p, ( V - - z )  -1 ~0) ~--- eiO~ ; 

Define 

/ .  2x-O~ 
B ( x ) = [ f ~ d ~ ~  sin ~) 

Then we have the following result. 

(6) 

(7) 

lim ei(X +i~)Fo(e i(x +i~)) = _ --+___c,1 B(x)  r  
e'~ o # 

Proof. By the first resolvent identity, we have, for any z e C such that 
lzl ~ 1, 

( U - - z ) - 1 ~ - ( V - - z )  1-]-#q) ) ( q ) ( V - - z )  l q - z # ( U - - z ) - l q ) ) ( q ? ( V - - z )  l 

Proposition 1. Let ;t # 0. Then d#~. has a pure point at x e [0, 2~) 
if an only if 

-1] ~ (8) 
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so that, taking expectation values with (p, 

Fx(z)=Fo(z)[  1 + # +  z#Fo(z) ] 1 (9) 

But it is clear that if e ~ is an eigenvalue of V~., then 

F / . . , ~ x + , , ~  ~ +s-,e-i%({x})__, +m (lO) 

and therefore, due to (9), 

lim e~(~• ~(x+-~)) = - 1 +______~p 
aNO # 

(11) 

Moreover, denoting F + = Fx(ei(X+'~)), we have 

l ime_  1 (F~ Fo )=#l ima_l(e i (X+~)r~ _e~( x ~)Fo ) 
~.0 \ E l  f ~. ~.~o 

~2~ d#o(O) d(x +~ ~ - e  ~) 
lim~.~o J,o ( e i ~  ~ - ~  

= # [2B(x)] -1 (12) 

But the lhs of (12) equals 

lim s-l(F~- - F ~  ) ~ -1] + l im Fo  [(eF f - (eF[)  (13) 
~-~o F f  ~ o  

If B(x) 4: O, the first term of (13) is obviously zero, whereas the second one 
is 

- 2 ( 1 + # )  ~ 1 +#2[e_~X#x(~x~)]~ , , 
##~({x}) # 

Therefore 

- 4 ( 1 + # )  
#~({x}) - #2 B(x) (14) 

and the converse statement is easily obtained. 

Corollary 2. Assume Ho is pure point, with {rp.}.~ ~ and {2.}.~ 
as eigenstates and eigenvalues, respectively, and let q~=Z~-~a.q~,  be 
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a cyclic vector for H o with norm unity. Then e ix belongs to the point 
spectrum of V~. if and only if 

+~ [an[ 2 
n(x) 1 = O~ sin2[( x -  On)/2] < ~ (15) 

and 

-boo  

[a,lZ cotgX-O'=cotg ~ (16) 
o 2 

where 

0, = 2r~{2n T/2~h} (17) 

{x} being the fractional part of x. 

Proof. By the cyclicity of q~, e ix is an eigenvalue of V;. if and only if 
dl~x(O) has a pure point at 0 = x. But using 

+ o o  

d~o(0)= ~ la,12a(O-On)dO 
0 

it is clear that the second condition of Proposition 1 reduces to (15), and 
that (16) follows from the first condition by equating the real and 
imaginary parts (and using the normalization Z ~  ~176 la,12= 1). Note that 
(15) and the normalization condition imply that (16) is absolutely con- 
vergent. 

In order to complete the proof of part (i) of the theorem, we need the 
following lemmas. 

L e m m a  3. Assume Zo ~~ [a,[ <oe.  Then (15) is true for almost 
every x e  ~ (regardless of the sequence {2,}). 

For the proof, see ref. t 1, Section 3. 

Lemma 4. The following statements are equivalent: 

(a) For a.e. 2, V~ has only point spectrum. 

(b) For a.e. x, B(x)r 
Proof. It is easy to see, using Cayley transforms, that the continuous 

part of the measure d#x is supported outside E =  {x~ [0, 2~) :B(x) r  
(See ref. 20 for the corresponding statement for self-adjoint operators.) But 
we have just seen that, for any 2 ~ 0, #fP (the pure-point spectral measure 
for V;.) is supported by E. Thus, V;. has only pure-point spectrum for 
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almost every 2 if and only if #4([0, 2~)\E) = 0 for a.e. 2. This in turn holds 
if and only if 

2n 

r o d 2 '  h(2') #4(I-0, 2~z)\E) = 0 (18) 

)r being the dimensionless constant 

2'=;tT/h (19) 

and 
1 

h(2) = 2 Re 1 - ce i4 (20) 

It is clear 
H(ei(X- i~))] dx 
x e  [0, 2~) 

for s o m e  Icl < 1, 
But we show below (Lemma 5) that the measure r/ defined by 

t "  2n 

q(X)=jo  d)o'h(2')#4(X) (21) 

{for X a Borel set in [0, 2~z)} is equivalent to the Lebesgue measure. Thus, 
q ( [ 0 , 2 ~ ) \ E ) = 0  implies that a.e. x~  [0,2z) belongs to E, i.e., satisfies 
B(x) r O. 

l . e m m a  ft. The measure r/defined by (20)-(21) is equivalent to the 
Lebesgue measure. 

Proof. The proof is analogous, for unitary operators, to an argument 
of Simon and Wolff (2~ for self-adjoint operators. Define, for z s C with 
]z[ # 1, 

H(z) = z - d2' h(2') = F4(z) (22) 
e i~ - -  z 0 

(as in the proof of Proposition l) that [H(ei(X+i~)) - 
converges weakly to dr/ as e'-~0. But defining for a.e. 

�9 ~ ( x )  + ~ x - , ~ .  
c o t g - - ~ =  Y' ba,]2cotg - (23) 

o 2 

it is easy to see that 

fo 
1 . - t - z F  0 z=exp[ i ( x+_ ie ) ]  

~ , 0  
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from which we get the following Fourier expansions or zFx(z): 

z=ei(x+it): zF~=~ e_i,:., ( zFo(z) ~ 
1 1 + zFo(z)] (24) 

zFx= - ~  d'~' ( l  + zF~ ~ (25) z . :  e i (  x i t ) ,  

o zFo(z) ] 

l + zFo : (  zFo ~ * 
(26) 

zFo . . . .  pE~(~ ~)~ \1  + zFoJ z =  e x p [ i ( x + i e ) ]  

Then~ by periodicity in 2 and the Bessel-Parseval relation, we get, using 
(24), 

i 2~ czFo/(1 + zFo) 
J0 h(2') d2' zFj~l . . . .  p[i(x+ ~t)l = 1 - czFo/(1 § zFo) . . . .  p[i(x+ i~:)] 

and similarly, due to (25), 

fo - ~( 1 + zFo)/zFo 2~ h()o') d2 zF x 'z=expE,(x-i~l = 1 - - ~ - 1 + ~  
Z 

Therefore, using (26), 

e x p [ i ( x  ie)]  

czFo/(1 + zFo) . . . .  p [ i ( x +  H(ei(X + it)) _ H(e,(X-it)) : -  2 Re 1 - czFo/( 1 + zFo) ,t~l 

p4x)Ecos ~(x)- pt(x)] 
t2"0 1 2p~(x) cos c~(x) + 2 =h~(x) 

- pt(x) 

where p~(x) = c e x p [ - e B ( x )  1 sin 2 c~(x)/2]. 
Now it is easy to check that 

- 2  ~<ht(x)~< 1 

uniformly for x e [0, 2~r) and e > 0  small enough. This shows that d~/ is 
absolutely continuous with respect to the Lebesgue measure. But the con- 
verse also holds because 

{x: lim h~(x) = 0 }  = {x: cos c~(x) = c} 
e N O  

has zero Lebesgue measure by standard results on analytic functions 
[because cose (x )  can be viewed as the boundary value of an analytic 
function]. This completes the proof. 

We now go to the proof  of part  (ii) of the theorem. Here we no longer 
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need the cyclicity assumption because, if the measure dtl~ is continuous, 
then the continuous spectral subspace for V~. contains at least the state (p. 
By assumption we have (replacing Ho by H o + h~o/2, which is harmless) 

2. = nh(9 (27) 

We have seen that B(x) r 0 is a necessary and sufficient condition for 
the spectral measure d#x to be pure point at e ix. But 

B(x)_ 1 = ~  [a.I 2 2 2 
o sin2[( x - 0 , , ) / 2 ]  >~ o {a'12 

4[a.]2 / > 4 # S ( x )  
"> Y' ( x -  o.) n~S(x) 

where S(x) is by definition 

S(x)=  {n: Ix-O.]  <~ ]a.l = n-~2~} (28) 

By assumption, ooT/2nr so that the sequence O./2n={ncoT/2~} is 
uniformly distributed modulo l. (15) Moreover, the worse ~oT/27~ is 
approximated by rationals, the more uniform is the distribution of 0./2n, 
and we have the following result. 

Lemma 6. Let coT/2~ be diophantine. Then, for any x ~ [0, 2~), the 
number # S(x) of elements of S(x) is infinite. 

Proof. Given (P.)n~ ~, #he [0, 1), we define for 0~<~<fl~< 1, 

A([~, fl), X ) =  # {n ~<U:#.~ [~, fl)} 

and we introduce the so-called "discrepancy" D N of the sequence #.  : 

D N = sup A ( [ ~ ,  fl), N) 
o<~<~<1 N (fl--0~) 

which measures the lack of uniformity in the distribution of (F.). <.< N. For 
every x e (0, 2u), the interval 

JN(X)= - - N  ',~-~u+N-' 

is contained in [0, 1 ] for N large enough and we have 

I N - I A ( J N ( X ) ,  N )  - 2N -y] ~< D N 



Periodically Kicked Quantum Hamiltonian 689 

But if o~T/2~ is diophantine,  or at least is of constant  type (see ref. 15), we 
have N D  u = O ( N  ~) for every e > 0, and therefore 

A ( J N ( X ) ,  N )  >>. N 1 ~ 

for N large enough. N o w  taking/~n = 0n/2~, it is clear that  

{n ~< N: Ix - 0hi ~< 2rcn -7 } D {n ~< N: #n ~ Ju(x)}  

and therefore, using (29), 

# S ( x ) = l i m  # {n<~N: Ix-On[ <~2~n "~} 
N 

~> lim A(Jv(x), N) = oo 
N 

This completes the p roof  of  Lemma 6, and thus of part  (ii) of the theorem, 
because d/~). is cont inuous  for every 2 > 0. 

The cont inuous spectrum of Vx may,  a pr ior i ,  be absolutely continuous,  
in contrast  to the case of rank-one per turbat ions of self-adjoint operators,  
where a pure-point  spectrum can only stay pure point  or become singular 
continuous.  The reason for this contrast  comes from the fact that  the 
difference of the self-adjoint operators  whose U and V~. are the Cayley 
transforms, respectively, is not  of rank one in case (ii) of the theorem. 
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